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A Study on Musical Sieves
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I Introduction

A musical sieve is a tool used for organizing musical information pioneered by lannis Xenakis.
In this paper I will first consider a general musical form, which will motivate a much heavier
mathematical discussion on sieves. I will then return to considering musicality informed both by
concrete aesthetics and abstract organization.

II The quality of music

When I speak of 'music’, I am referring to considered sound - sound that is interpreted in a co-
herent form. This may seem too general, too subjective, to support formal mathematical structures,
but that is far from the truth. As demonstrated in our very class, there exist strong tendencies
across many different cultures to deliberately structure their music in logically ways. The necessity
for coherency is a part of our desire for understanding - and music itself is formed in the crucible
of rigid structure and curiosity for the unknown.

Logic, like language, and most semiotic sign systems, is discrete. Some cognitive scientists,
like Jerry Fodor, even argue that discreteness is one of the factors that makes human thought
unique, a necessary precondition for advanced reason. But sound is continuous! It is not surprising
then sound must undergo a process of discretization to be intelligible to us. This discretization
happens in many forms: pitches, rhythms, dynamics, timbres, attacks - all of them have common
discretizations. These parameters can sometimes vary continuously, such as in crescendos or slides,
but these continuous variations are most often thought of and written as discrete musical events
themselves. Intervals between discrete events create new spaces of continuity, which can then be
further discretized. Even in music that deliberately eschew discretness, such as in my modern and
contemporary trombone works, it is impossible to escape the discreteness of time and form - that
all works must have a beginning, middle and end. In table 1, I have a list of musical parameters
and their associated discretizations.

Intervals provide one way to consider continuity within discrete parameters. Another common
way comes from performance and probability. Performance itself is a continuous act, and we
often bracket this continuity as ’interpretation’ - the act of realizing and abstract discrete piece
of music as continuous sound. Even speakers must do this - as no two speakers sound the same.
Composers can use this sort of continuity within the act of composition itself via probability theory.
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Parameter Discretization

Pitch Notes, Fractions

Loudness Dynamic Markings, Volume

Attack Accents, Dynamic Markings

Timbre Instrumentation, Harmonics

Meter Time Signature

Rhythm Noteheads

Form Section, Movement Number

Location Orchestration, Speaker Orientation
Intervallic Discretizations

Pitch Glissando, Vibrato

Loudness Crescendo, Tremolo

Rhythm Rubato, Swing

Location Panning, Movement

Timbre ”Shape” (No settled terminology)

Form Fade Out/In

Table 1: List of parameters and their discretizations

Probability theory allows us to make continuity intelligible within our discrete logical world. Every
discretization above can also be mediated probabalistically to move closer towards the continuous
world of sound. Music is an abstraction, and therefore necessarily a discretization of sound - but
the act of composition, of creating new sounds, requires moving beyond present abstractions into
new ones, which most always be done by considering concrete, continuous sound.

Sieves

A sieve, as we'll see in the next section, is a particular way of picking out elements of a discretiza-
tion with particular attention to the intervals between them - first explored by Iannis Xenakis. Our
discussion above will motivate us to explore interesting properties of sieves. More specifically, we
will want to explore sieves formally with regards of finding interesting sonorities within specific pa-
rameters. This will first entail a process of abstraction and then a re-introduction of our parameters
to motivate the properties of sieves we wish to study.

III Quantities

Discretization starts with the peano axiomatic, just as the natural numbers N = {1,2,3...}.

Often times it’s more useful to consider the integers Z = {...—2,-1,0,1,2... } since many musical
parameters can be both decreased and increased. Note that if we want to increase the spacing of
our discretization, we can multiply by an integer m: mZ = {... — 2m,—1m,0,1m,2m...}. We

also care about the integers modulo m, which we will write as Z/mZ which consists of classes of
integers under the relationship that a ~ b if and only if @ + nm = b for some n € Z. With these
preliminaries out of the way, we can now define sieves.
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Musical Sieves

Musical sieves, as defined here, are not precisely the same thing as number theoretic sieves. For
the remainder of this paper, it should be assumed that by "sieve” I mean "musical sieve”.

Definition 1. Basic Sieve is a set mZ + k= {...k—2m,k —m,k,k +m,k+2m,k+2m...}.

Definition 2. A Basic Cosieve is a set theoretic complement of a basic sieve (mZ + k)¢ that
contains all of the elements of a € Z where a # nm + k Vn € Z.

Definition 3. A Sieve is a subset of the integers {S C Z} generated by taking unions or intersec-
tions of finitely many basic sieves or cosieves. We will let the space of sieves be called S

Note 4. We could consider more complicated sieves by allowing for infinite unions or intersections.
This is an interesting area of exploration but outside the scope of this paper

Note 5. We don't need to consider cosieves as part of this definition. For any basic cosieve we

have that
je{1,2...m—1,m}

(mZ+ k) = U (mZ + 3)
7k
For example, we have that (3Z + 0)° = (3Z + 1) U (3Z + 2)

Definition 6. A presentation of a sieve is a specific way of representing it using intersections
and unions of basic sieves. We can also define copresentations by using basic cosieves instead.

Note 7. A sieve may have multiple presentations, some more complex than others. For example,
Z = (2Z +0) U (2Z + 1). We will want some ways of distinguishing between various presentations.

Definition 8. The order of a sieve, 0(S), S € S is the minimum number of basic sieves necessary
to write a presentation of S. By definition we’ll take o() = 0. We can also define the co-order,
0°(S) by taking basic cosieves instead.

Definition 9. The rank or period of a basic sieve r(mZ+ k) is m. The rank of a sieve presentation
is the least common multiple of the ranks of its constitutive basic sieves. The rank of a sieve r(S)
is given by the minimum rank of all of the presentations of S. By considering copresentations we
can also consider the corank r¢(S) of a sieve.

Definition 10. We will call sieve of rank m separated if it only has presentations of rank m.
Proposition 11. 7(S) = 7¢(S); 0°(S)/o(S) < 7(S); o(S)/0°(S) < r(S). To prove this, we note
that any basic sieve of rank m can be written as m — 1 cosieves, and so the co-order of a sieve will

always be bounded by m times the order of the sieve. Rank and co-rank must always be equal
through this same rewriting.

It may be a little more interesting note, we can write both inequalities above together as

llog(o(S5)) — log(0“(5))| < log(r(S))

Note 12. We can think about log(o(S)) as the order-complexity of the sieve S. The thrust of the
above proposition is that for low enough rank sieves, any results about order-complexity will roughly
hold for co-order, up to the log of the rank. While a basic sieve may be a more natural way of
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thinking about intervals in most cases - the cosieve view can be thought of classifying the complexity
of a work of music by studying its silences instead. We generally expect a complex rhythm to also
have a fairly complex set of silences, and the above result shows that this is generally true in the
sieve setting. If we're feeling confident, we can form a conjecture (which I have not confirmed is
true)

Conjecture 13. Take all S € S so that r(S) = m, call this set R,,,. We conjecture that

lim " |log(o(S)) — log(0°($))|/ log(r(S)) = 0
m—oo
SER;,

Take for example, a sieve of rank 17, 17Z. As a rhythm this is sieve is fairly simple to the
listener - we cannot precisely measure the silence, but we'll hear a predictable beat. On the other
hand, if tried to write this sieve only using intersections of complements, we would have to take 16
cosieves to do it. If our sieve is a measurement of the only beats where we are silent - if we flip the
role of silence and sound in our thought - then the sieve is fairly complex. Rather than hearing a
regular beat, we would hear a repeating pulse with a highly irregular silence. This dichotomy can
be quantitatively measured by the fact that this sieve has order 1 but co-order 16.

We can create sieves with this dichotomy pretty easily, however, we expect that most sieves of
order 17 have equally complex silence and co-silence. This conjecture is a precise mathematical
statement of that guess.

The monomial model

Changes in notation can bring new insights, in both music and mathematics. Lets create a nicer
notation for sieves. Rather than 3Z + 1 we will write 3z + 1. In general we will write mZ + b as
max +b. We then write 3Z +1U3Z + 2 as (3z+ 1) V (3z + 2) We will also write 3Z +1N3Z + 2 as
3z + 1) A (3z 4 2). (V stand for "or’; A stands for "and’). We will also write =3z + 1 for (3Z + 1)°.
We will call the empty set 0. Note that we need to make =0 and -z undefined to have well-defined
algebraic relations. If we have mx + b with b > m we’ll take b mod m.

Note that these aren’t normal linear expressions: we have expressions like 22 A 2x 4+ 1 = z. We

can ask what the algebraic relations are. For listing all of these relations, I'm going to just show
one example for clarity, with the general case being implied.

Theorem 14. The algebraic relations on sieves are generated by the following rules (lem is the
least common multiple and ged is the greatest common divisor):

Logical Rules:

(1) ~z=0

(2) 8z =3z+1V3zr+2

(3) De Morgan’s Laws

(4) Commutativity and Distribution: p(z) A (q1(z) V q2(z)) = (p(z) A q1(z)) V (p(x) A g2(z))
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Partition rules:
B)ymzVmzr+1Vmz+2---Vmr+m—1=ux

(6) mxz + kAmax+j =0 (for j #k)

(1) z Ap(z) = p(x), 0V p(z) = p(z), zVp(z) =2, 0 Ap(z) =0

Number rules:

(8) axr + bV cx +d = ax/ged(a,b) + bV cx/ged(a,b) + d

(9) ax+bAcx+d = lem(a, c)x + e when ged(a, ¢) divides b—d. e is found via euclid’s algorithm.
(10) az + b A cz + d = 0 when ged(a, ¢) does not divide b — d.

Rules (1)-(4) define all of the logical properties of sieves. Rules (5)-(7) allow us to do reduction,
and rules (8) and (9) tell us when our systems of equations given by sieves have solutions. Using
these rules it is possible to program a (very slow) algorithm to take a repeating set of numbers
and find both its rank-minimal and order-minimal sieve. Xenakis also describes similar rules and
an algorithm for sieves, but his algorithm instead focuses on decomposing sieves into prime power
intersections.

Proving this theorem is a bit difficult. The logical rules are straightforward, the number rules
require some more linear programming to show but are a consequence of the chinese remainder
theorem. A full proof would talk about a lot of space and time, so in licu of that let me instead a
show a few results that motivate these rules.

Lemma 15. Take a sequence of numbers {ai,as,as,...} with a1 — ap = ar — ax—1 Then
{ai,az,as3,...} = mz + b, a basic sieve.

Proof: Call ap, —ag—1 =1lthen apry = ar+1l=ap_1+2l=--- =ar1+klso (ap —ar—1)r+ar =
{a1,az,...}.
Lemma 16. Take any sieve of the form s; A so where s; and sy are basic sieves. Assume that the
sieve is non-empty, so that {a1, as,as, ...} = s1 A sa2. We then have that ap — ap—1 = ary1 — aVm
and so, 1 A sy = 83

Proof: aj —ay_1 is in ax A cx so without loss of generality, we can assume that s A sy = pr Agx

Now ay, is a multiple of p and q if and only if it is a multiple of lem(p, ¢), the least common
multiple of p and q. So ax A cx = lema, e. Alternatively, we could use rule (9).

Theorem 17. Every sieve can be written in the form s; V s3 V s3-++ V s,,.
Proof: We can always distribute to write any sieve as

(pll(-r) /\p12(1') A -pl'n(l’)) 4 (p21 (-T) A -1721L(I)) VeV (pml(l“) Apm2(z) AL -pmu(z)

about:blank

10/5/23, 19:54



Firefox

6 of 9

From the above lemma we either write these write any of these A terms as a single basic sieve
(including possibly the empty sieve).

Note 18. This tells us that all sieves have a representation as unions of basic sieves. However,
note that finiteness is very important for this result - infinite sieves can have intersections that are
not reducible to unions.

Lemma 19. Any order-minimal or rank-minimal sieve presentation can be written in the form of
the previous theorem.

Proof: The procedure above always reduces the order of a sieve and keeps the rank the same.

Theorem 20. There is only one order minimal presentation of a sieve, up to rearrangement. The
presentation is also rank minimal.

Proof: There is only one way to write an order 0 sieve, as 0. By induction, assume the statement
is true for sieves up to order n—1. We want to show that the statement is true for sieves of order n+1.

Assume for contradiction there are two equal order minimal presentations of a sieve of order
n and take s = 81V sy Vs$3...8, =11 VroV...r,. Since these sieves are order minimal, there
exist a; € s so that a; ¢ s; where j # i. Now with possible rearrangement, we must have that
a € ~(raVryV...r,) as well. Since by, induction, there is only order minimal sieve of rank n,
and with more rearrangement, we must have that ro = so,73 = s3...,r, = s,,. Therefore s; = ry
and there is only one order-minimal presentation of a sieve. This is also rank minimal because any
increase in rank must also cause an increase in order.

Transformations

We want to define transformations of sieves so we can understand their symmetries. A transfor-
mation, alternatively called metabolae by Xenakis, is any map that takes sieves to sieves. A basic
transformation takes basic sieves to basic sieves. In general, we will want to take a transformation
on sieves and extend it to basic sieves.

Proposition 21. Take a basic transformation, f. For f to be extendable to a general transforma-
tion, it is sufficient that f(s) A f(r) = f(s A7), f(s)V f(r) = f(sV ), f(—=s) = = f(s) for all basic

sieves.

Note 22. Not all transformations come from basic transformations. For example, the complement
f(s) = —s is a well defined transformation but does not come from a basic transformation.

Definition 23. The identity transformation acts as identity: 1(s) = s.

Definition 24. A transposition, T}, is a basic transformation that takes 7' : ma +b +— ma +b+k.
Transposition extends to general sieves by = + x — k, or more instructively, taking mZ + b
m(Z—k)+b

Note 25. Since we defined sieves to be finitely generated from basic sieves, there is only one

extension of T}, as a general sieve. And in general every basic transformation only has at most one
extension. For infinite sieves, this may not be the case due to godel’s incompleteness theorems.
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Definition 26. The conjugation or intervallic inversion transformation I(s) takes mz + b —
mxz — b. If we think about a sieve as a union of lines, the conjugation operation flips those lines
over the x-axis.

Conjecture 27. Let f be any function on the integers so that for any two co-prime numbers, m
and n, f(mn) = f(m)f(n). Then a basic transformation F : mz + b — f(m)x + b extends to a
general transformation on all sieves.

Note 28. This is an interesting conjecture but I'm not sure what to do with it musically. Trans-
formations give us an incredibly rich space to talk about musical ideas, but before we get into that
we'll need just a little bit more mathematics: we'll need to define some symmetry properties related
to transformations.

Definition 29. Let F' be any general tranformation of sieves. We call a sieve s. k-cyclic with
respect to F if applying F' k-times to s. A l-cyclic transformation with respect to F is called
invariant with respect to F.

Proposition 30. Let s be k-cyclic with respect to F. Then sV F(s)V F2(s)V F3(s) V... FF1(s)
is invariant with respect to F.

Definition 31. Take a general transformation F'. Call two sieves equivalent if s ~ F(s). We call
the space of sieves modulo this equivalence relation S/F', the F-orbit class of sieves.

IV Measure in music

Now that we've created thorough mathematical tools, we can use them to get to express very in-
teresting musical results. We have at our hands a rich disposal of tools, transformations, complexity
measure and viewpoints, let’s get to using them!

§1. The (11, I)-orbit classes for rank m-presentable sieves are pitch class set classes for m divisions
of the octave.

§2. To write any rank 12-presentable sieve, we can use basic sieves of rank 1,2,3,4,6, and 12. This
presents us with an interesting question which sieves of rank 12 are separated? That is to say, just
using /lor, which ones can only be written using rank 12 basic sieves and not with any lower ones?

§3. Well, such a sieve-class cannot have any intervals of size 6, nor can it have 3 adjacent intervals
of size 4, 4 adjacent intervals of size 3, nor 6 adjacent intervals of size 2.

By the pigeonhole principle, any such a sieve must be order 5 or lower. There are several of
these sieves, but we can look at more interesting properties by narrowing them down.

For example, the only rank 12 separated sieve-class without intervals of size 1 is 12z V 12z +
2V 12z + 4V 122 + 7V 122 + 9 which corresponds to the major pentatonic scale. The other sep-
arated sieve-classes of size 5 (forte no. 5-27A/B, forte no. 5-23 A/B, forte no. 5-11 A/B, forte
no. 5-2 A/B and forte no. 5-1) with size 1 intervals do not correspond to commonly known scales
since step sizes of a semitone are uncommon in five note scales. It is interesting to note that the
only separated sieves without z-relations are the major pentatonic and the five note semi-chromatic
scale: 12x VvV 122+ 1V 12z +2V 122 + 3V 122 + 4.
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84. Separated sieves are particularly interesting because they are a property that tracks indecompa-
sibility. All sieves of prime rank are necessarily separated. We can use separated sieves as building
blocks for more complicated sieves just as we use prime numbers as building blocks for composite
numbers.

Note that any separated sieve of rank m cannot be T}, invariant for & < m.

85. Assuggested by the monomial model, we can picture any basic sieve as a line over an integer grid,
only including the numbers that the line hits in our sieve. This suggests that we can create continu-
ous sieves by including integers with an intensity that scales down from the distance from the line. In

particular, we could consider a single musical note given as a,, exp(—d|round (n — b)/mm + b — n|) sin nmz.

This note would correspond to the sieve mx + b, with scaling factor d determining how harshly dis-
tance from the sieve should be measured and factor a,, determining how to scale down the notes as
n increases.

86. Sieves given by cycles are quite interesting. For example take 12z. The sieve generated by
taking 75 cycles is 122V 122 + 2V 122 + 4V 122 + 6 V 12z + 8 V 12z + 10, which is the whole tone
scale. On the other hand, taking T3 cycles generated by 12z Vv 12z + 1 gives us 12z Vv 12z + 1V 12z +
3V12r +4V 122+ 6V 122 + 7V 122 + 9V 122 + 10, the octatonic scale. Transpotionally generated
sieves can never be separated, for example, the octatonic scale can also be written as 3z V 3z + 1.

§7. Another interesting cycle is given by inversion. Take for example, the sieve 3z V 4z + 1. The
inversion-generated sieve is 3z Vdzr +1Vdr +3 =120V 120+ 1V 122 +3V 12 + 5V 122 + 6 V
12247V 122+ 9V 122 + 11 which is a transposition of messian mode 6. Using inversion equivalence
allows us to create simple scales that have very nice symmetry properties. Similar to the above the
scale generated by inversion of 3z + 1 is a transposition of the octatonic scale.

§8. Another interesting sieve transformation to explore comes from the indicator function for prime
powers is multiplicative and so forms a sieve transformation by acting on the multiple. This allows
us to take a 'master sieve’ and look at parts of it that only have cycles of a certain prime power.
There are other sorts of indicator functions that form well defined sieve operations that can be used
as well, such as sets generated by powers of two distinct primes.

For example, we can take the sieve 2z VvV 3z V 4z + 1V 5z + 3. Applying our indicator for prime
powers of 2, we can get a sub-sieve with 2z V 4z + 2. In this manner we can also think about
building sieves from smaller ones of prime-power orders.

§9. Another interesting sieve operation is the doubling shift: D(max + b) = 2max + b+ 1. If we take
3x Vv D(3z) Vv D(D(3z)) we get 3z V6x+ 1V 12z + 2. Sieves generated this way have very interesting
structures, dense down near 0 and less dense higher up. These sorts of sieves may serve as a way
to generate new sorts of timbres.

§10. We might start to think about making a catalogue of transformations that producing inter-
esting properties for various musical paramters. For example, inversion generates interesting pitch
structures, order-minimality creates interesting rhythms, doubling and other infinitary transforma-
tions create interesting timbres. It is a bit harder to find transformations that produce interesting
sieves for loudness or form, but with a bit more digging there may be a very rich world here to look
at.

§11. It is interesting to note that sieves and sieve transformations provide generalizations for set
classes and microtones in the right contexts. In this sense, studying the transformational properties
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of sieves provides a new direction to understand other well-explored mathematical structures in
music.

§12. Repeated applications of sieve transformations also allow us to create structures like sieve
dynamical systems and sieve markov chains, where each state corresponds to the application of an
additional transformation. There is an immense world of music that could be made in exploring
these directions.

V Future Research and Music

There are a number of directions to take this in and I'm excited to explore all of them. First off,
I'd want to create nice programming packages that could be used to make sieves and apply sieve
transformations that would make music creation much easier. This would be a very interesting
project to work on.

Another direction would be to explore down the path of continuous sieves - in fact a musical
sieve itself is only one type of a much larger class of algebraic equations over the integers, usually
ralled a diophantine equation. In a very direct way, a sieve is a sonification of a line, or a union of
multiple lines. One could sonify any sort of algebraic object in a similar fashion.

A different direction would be to classify all sieves of rank less than 12. I would be surprised if
this hasn’t been done already - but I could not find any resources doing so. The steps here would
be to finish writing my program that can simplify sieve presentations and then use it to write down
the order-minimal presentations of different forte numbers.

I do want to create music out of these objects. I've had a lot of enjoyment looking through
various sieves and hearing what sorts of sounds they make. I do want to eventually put it all
together and make a coherent piece of music out of these ideas.

VI Conclusion

Sieves are robust tools that allow us to explore interesting structures in the discretization of mu-
sical parameters. Throughout this paper we've looked at various metrics, models and relationships
of sieves and found interesting musical applications of those tools. Sometimes these results can
seem too mathematical, but powerful mathematical structures give us a richer language for creative
play. Even though notation can often be dense, the power of that notation is that it allows us to
think about old objects in new ways. There are lots of new ways to think about sieves, musical
avenues still unexplored. I hope this paper can serve as a baseline to help us navigate the manifold
opportunities sieves provide.
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